July 14, 2021

Echinophthirius horridus

Lice are common parasites of mammals. Humans alone are host to three different species of lice, and it's not just humans or land mammals that can get infected with lice. Pinnipeds - seals and sea lions - also have to contend with being covered in those ectoparasites. Unlike many other ectoparasites in the sea which have been bestowed with the name of "lice" such as salmon lice, tongue-biter lice, or whale lice (all of which are crustaceans), seal lice are true lice, in that they are parasitic insects belonging to the order called Phthiraptera.

Left: An adult seal louse, Right: two opened seal lice eggs (nits) glued to a strand of seal fur hair
From Fig. 1 of the paper

When the ancestors of modern pinnipeds took to the sea some time in the Oligocene about 30 million years ago, the lice followed them into the water, and in the process, they have to deal with all the challenges associated with living on an aquatic host. Seal lice belong to a family of lice called the Echinophthiridae and they have some specialised adaptations for living on hosts that spend most of their time immersed in sea water. This include elongated spiracles (the opening insects use to breathe) with mechanism for closing, a dense covering of spines and scales, and stout clamp-like claws that allow them to grip tightly onto their hosts' fur.

Blood-sucking arthropods such as ticks, fleas, and lice are often responsible for transmitting a wide variety of parasites and pathogens. And it seems that seal lice can also play a similar role in the sea. While performing routine diagnostics on 54 harbour seals and a very heavily-infected grey seal pup that were hospitalised at the Sealcentre Piteterburn (a seal rehabilitation and research centre in Netherlands), a group of scientists were able to use that opportunity to collect a massive number of seal lice from those marine mammals. They ended up collecting 200 lice from the harbour seals, and another 1000 from that one very heavily infested seal pup.

Those researchers divided the lice into batches of 1-20 lice, based on the individual host that they came from (the lice from the heavily infected seal pups were divided into multiple batches of 15 lice), then grind them up, and examined the lice slurry by subjecting it to polymerase chain reactions that amplified the DNA of known seal parasites and pathogens.

The DNA analyses showed that the seal heartworm (Acanthocheilonema spirocauda) was the most commonly found parasite, with it being detected in about one-third of the lice samples. While most people would associate "heartworm" with the dog heartworm (Dirofilaria immitis), that species is just one out of many different filarial roundworms that live in the heart of mammals. The findings of this study corroborates with previously published research which have found heartworm larvae dwelling in the gut of seal lice, demonstrating that these ectoparasitic insects play a key role in the transmission and life cycle of these nematodes.

Alongside the heartworm, there were also some bacterial pathogens lurking in those lice. Some of the lice from the grey seal pup were also carrying Anaplasma phagocytophilum, the bacteria which causes tick-borne fever and as their name indicates, are usually carried by ticks. Additionally, a few of the lice from that seal pup and some of the harbour seals were also carrying a species of Mycoplasma bacteria. This microbe is commonly found in seals and other marine mammals, but when it gets transmitted to humans, it is also associated with a disease known as "seal fingers". However, unlike the heartworm, it is unclear if the lice actually play a role in the transmission of these bacterial pathogens, or if they were incidental infections that simply came with living on a seal host.

It is worth noting that while pinnipeds had retained an heirloom of their terrestrial ancestry in the form of lice, another group of marine mammals - the whales - have acquired their own unique suite of ectoparasites which are unlike that of any other mammals. They have "whale lice" which are actually crustaceans in the same group as sandhoppers, along with pennellid copepods - a family of parasitic copepods that usually infect fish, with the exception of one species which has evolved to parasitise whales.

So why are there no "true lice" on whales? Well, for all their adeptness at clinging to their host, lice ultimately depend on the presence of hair or similar structures to hang onto their host. When a seal dives underwater, the layer of fur forms a covering that the lice can shelter underneath. But no such shelter exists on the smooth, hair-free surface of a whale. As a result, while whales have escaped the lice (and have picked up other parasites in the process), pinnipeds have kept their fur, and along with it, their lice and the worms that they carry.

Reference:

No comments:

Post a Comment