Quite a few years ago I wrote a blog post about a study on some bird lice that hitch-hike on louse flies as a way of reaching new hosts - this type of interaction whereby an organism attach itself to the body of another as a way of getting around is called "phoresy". And while it is a fascinating interaction with important ecological implications, this phenomenon is not particularly well-studied. Well, the paper that is being featured in this blog post revisited that field of research, and used multiple approaches to investigate this type of interaction. And the researchers behind it did so by combining literature review, traditional parasitology, DNA barcoding, and citizen science.
Left: Guimaraesiella lice found on from louse flies. Right: Louse fly with lice attached (indicated by red arrows). From Figure 3 of the paper. |
The researchers of this study were trying to figure out how common phoresy is among bird lice, and who exactly is hitch-hiking on what. They conducted a review of the existing scientific literature on phoretic relationships between lice and louse flies, and found that many of the older records were unusable because they lack sufficient details regarding species identity of the lice involved. Furthermore, while phoretic behaviour in lice is most well-documented in North America and Europe, there are other parts of the world with much richer avian fauna (and thus more bird lice species), but phoretic behaviour of bird lice in those regions are not as well-studied.
To address this, the researchers came up with a way of collecting lice and louse flies from a large number of birds, and did so with some help from members of the public. As a part of long-term project to monitor bird mortality from vehicle and building collisions, ordinary citizens in Singapore were encouraged to report any dead birds that they come across. Through this, the researchers were able to track down and collect over a hundred recently deceased birds for this study. They then screened the dead birds for lice and louse flies, which were identified based on their morphology and their DNA.
In total, they screened 131 birds composed of 54 different species, and collected 603 lice and 32 louse flies. Of those, 22 birds had louse flies on them, but only three of the louse flies also happened to be carrying hitch-hiking lice, which were identified as belonging to the genus Guimaraesiella. Amidst all that, they found something unexpected - one of the birds, a Blue-winged pitta (Pitta moluccensis) was infected with louse flies carrying Guimaraesiella lice. This is the first time that Guimaraesiella lice has been found on pittas, as those birds are usually infected with lice in the Picicola genus.
To address this, the researchers came up with a way of collecting lice and louse flies from a large number of birds, and did so with some help from members of the public. As a part of long-term project to monitor bird mortality from vehicle and building collisions, ordinary citizens in Singapore were encouraged to report any dead birds that they come across. Through this, the researchers were able to track down and collect over a hundred recently deceased birds for this study. They then screened the dead birds for lice and louse flies, which were identified based on their morphology and their DNA.
In total, they screened 131 birds composed of 54 different species, and collected 603 lice and 32 louse flies. Of those, 22 birds had louse flies on them, but only three of the louse flies also happened to be carrying hitch-hiking lice, which were identified as belonging to the genus Guimaraesiella. Amidst all that, they found something unexpected - one of the birds, a Blue-winged pitta (Pitta moluccensis) was infected with louse flies carrying Guimaraesiella lice. This is the first time that Guimaraesiella lice has been found on pittas, as those birds are usually infected with lice in the Picicola genus.
It is likely that riding on louse flies is how Guimaraesiella ended up on the pitta. Indeed, lice in that genus appear to live on a wider range of birds compared with most bird lice, which are often confined to a single or handful of closely related host species, and its hitch-hiking habit may be the key to their success. While bird lice are very adept at climbing around and between their host's feathers, they are completely helpless off the host's body. This doesn't give them much opportunity to branch out and onto other bird species as they can only climb onto a new host through direct contact.
But since louse flies feed on a variety of different bird hosts, travelling on one of those flying blood-suckers can open up a whole new world of possibilities for lice that engage in phoresy. The species of Guimaraesiella lice they found on the pitta has also been found on at least 24 other species of birds, possibly more. Considering that the louse fly that Guimaraesiella rides on - Ornithophila metallica - feeds from over a hundred different bird genera, perhaps it is surprising that Guimaraesiella hasn't been found from even more bird species. So while the louse fly presents its hitch-hiker lice with many different species of birds, those well-travelled lice still stay fairly selective when it comes to where they settle on. These lice are like Goldilocks when it comes to picking a new feathery home - it needs to be just the right fit.
The approach taken by the researchers in this study to recover and screen large numbers of birds for louse flies and lice can also be applied to other parts of the world. This would help us obtain a more complete understanding of how widespread hitch-hiking lice actually are, and the role this behaviour has played in the evolution of these ectoparasitic insects.
Reference:
Lee, L., Tan, D. J., Oboňa, J., Gustafsson, D. R., Ang, Y., & Meier, R. (2022). Hitchhiking into the future on a fly: Toward a better understanding of phoresy and avian louse evolution (Phthiraptera) by screening bird carcasses for phoretic lice on hippoboscid flies (Diptera). Systematic Entomology 47: 420-429.