Kabatarina pattersoni - a species of parasitic copepod described from the gills of some Early Cretaceous bony fish (The larger individual is the female. From Figure 1 of this paper) |
Other such amber-preserved specimens include blood-sucking insects - which was a major plot device in Jurassic Park. Unlike in Jurassic Park, those amber-preserved biting insects do not contain intact dinosaur DNA, but at least they do contain fossils of parasites that might have infected dinosaurs. Some biting midges from the Cretaceous were carrying around malaria-type parasites in their gut much like the types which infect modern birds and reptiles. So perhaps dinosaurs might have contract malaria and other such insect-borne diseases from those blood-suckers.
In addition to amber, another potential source of fossil parasites is coprolite. Coprolite is simply the technical term for fossilised poop, and examining coprolite can be a good way of finding out what the animal that dropped the dropping had been eating, as well as the kind of environment that it lived it. As any parasitologist or veterinarian would known, riffling through poop samples is a routine method for identifying what parasites are found in an animal. So why not do the same for dinosaur dung? After all, palaeoecologist are already sampling coprolite for fungal spores and many other things, and the same technique can be used to look for parasite eggs as well. It was through examining samples of fossilised dung that some scientists have found evidence for tapeworms in prehistoric sharks, pinworms in Triassic proto-mammals, and parasitic flukes and roundworms in dinosaurs.
Fossilised tapeworm eggs from shark coprolite |
Reconstruction of a tyrannosaurid with canker sore (by Chris Glen) |
It seems that prehistoric animals were mostly infected by parasites which are fairly similar to those of their modern equivalents. But some unexpected combinations of parasites and hosts have also been found in the fossil record. For example, a recently discovered fossil showed that tongue worms (Pentastomida) - which are weird parasitic crustaceans that live in the respiratory tract of terrestrial vertebrate animals such as reptiles - actually started out as external parasites that clung on the carapace of crustaceans during the Silurian period (about 425 million years ago).
But before we get to excited and start labelling every weird-looking fossil critters out there as parasites, we need to examine each examples critically as one should when hypothesising about the life style of any extinct organism. Otherwise, it will just muddle our understanding about the role that parasites played in prehistoric ecosystems, and how they might had evolved.
For example, earlier in 2014, there was a paper published about a Jurassic fly larva which the authors claimed was an ectoparasite of Jurassic amphibians. But there wasn't anything about that fossil that would specifically identify it as a parasite. It was not found in close association with hypothesised amphibian hosts, nor did it have any anatomical features which can only be explained by parasitism as opposed to many other equally plausible alternative explanation.
The authors claimed that the fossil insect's piercing straw-like sucking mouthpart and the possession of suckers were key features which made it a parasite. But piercing mouthparts are also found in non-parasites such as giant waterbugs and other predatory insects, and suckers are used by other non-parasitic aquatic animals for anchoring themselves to rocks and other substrate. Additionally, there are living relatives of that fossil fly which have larvae with similar anatomical features. But instead of being parasites, they are actually aquatic predators (which explains the mouthpart).
Pseudopulex is a Jurassic insect which has been interpreted as a "flea" that parasitised dinosaurs, however some researchers disagree with this interpretation (Reconstruction Wang Cheng via Oregon State University) |
When analysed critically, fossils can provide valuable insight into how parasites evolved into what they are now, and what changes have taken place over their evolutionary histories, such as the kind of hosts they infected, and how they infected them. The fossil record seems to indicate that that the evolution of new groups of animals were often accompanied by the evolution of parasites that specialised on parasitising them. By looking at how parasites have evolved and lived in the past, we might be able to anticipate how they might evolve in the future in a changing world.
Given that parasites can often shape entire ecosystems through the effects they have on their hosts, when considering how prehistoric plants and animals might have interacted with each other, it is important to be mindful of their parasites as well. Velociraptor might had been buzzed by sandflies that carried dino-malaria in their gut, a T. rex chomping on the rump of a Triceratops might had swallowed a whole load of parasitic worm larvae with every mouthful. A Jurassic World full of dinosaurs is incomplete without its share of prehistoric parasites.
Reference:
Leung, T. L. F. (2015) Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biological Reviews DOI: 10.1111/brv.12238
No comments:
Post a Comment