"So, naturalists observe, a flea has smaller fleas that on him prey; and these have smaller still to bite ’em; and so proceed ad infinitum."
- Jonathan Swift

August 23, 2013

Maritrema novaezealandensis (revisited)

This is the fourth and final post in a series of blog posts written by students from my third year Evolutionary Parasitology unit (ZOOL329/529) class of 2013. This particular post was written by Sally Thorsteinsson on a study that investigated how an intertidal parasite with a complex life cycle might respond to global warming (you can read a previous post about toxic birds and their lice here, a post about bees protecting themselves against fungal parasites by lining their hives with resin here, and how an avian malaria parasite might make its bird host more attractive to mosquitoes here).

Paracalliope novizealandiae
Intertidal habitats are tough places to live: one minute you may be submersed, buffeted, and chilled by salt water, the next baking under a hot, drying sun. However, global warming is predicted to turn up the heat even more on those that inhabit these environments. The tidal flats on the South Island of New Zealand are the habitats of the parasite trematode Maritrema novaezealandensis and the three hosts necessary for it to complete its life cycle – mudsnail Zeacumantus subcarinatus, amphipod Paracalliope novizealandiae (a type of sandhopper-like crustacean) and gulls which are its final host (this life cycle is described in a previous Parasite of the Day blog post here).

Cercaria of
M. novaezealandensis
Trematodes are strongly influenced by the heat, and some studies have predicted that they will flourish with global warming and increase their impact on intertidal systems. However, parasites cannot be looked at in isolation, but considered as part of the ecosystem, which may also be temperature sensitive. For M. novaezealandensis itself, there may be a perk to global warming, as long as temperatures stay within its optimal range.

When the water in rock pools is comfortable for us to roll up our jeans and paddle (between 20 and 25 °C), M. novaezealandensis thrives. At present this happens during low tide on hot summer days and the warmth sparks the release of multitudes of cercariae (free-swimming trematode larvae) into the water from the bodies of their snail hosts, ready to drill their way into their next host, the amphipod. In such temperature, the cercariae survive for relatively long periods, are at their infective peak and develop well inside the amphipods. These conditions are expected to occur more often and for longer periods with global warming - not particularly good news for the host snails and amphipods of M. novaezealandensis  bombarded by increased numbers of this parasite and suffering death and destruction (particularly the amphipods) as a result.

But the heat gets all too much for M. novaezealandensis at temperatures greater than 30 °C when there are still many cercariae but they infect amphipods at lower rates and their lifespans are shortened. The amphipods also die at such heat, making it harder for the parasites to find their hosts and live in them long enough to develop. At present these extremes are rare, but the increase in high-temperature days as predicted would disrupt the parasite’s life cycle further and decrease the population of amphipods. As amphipods are an important food source for other animals, as well as the decomposers of the intertidal world, their demise can have widespread consequences.

Who knows what changes global warming will be bringing to the wider ecosystem; lab experiments, such as the one providing these results in this study, can only offer an indication. Further research into the effects of climate change on host-parasite systems will be important given the pivotal role of parasites and the complexity of the ecosystems that they are part of. Perhaps the behaviour of the snail, amphipod and gull hosts will also be affected by temperature changes, sea level rise or alterations in habitats and such selection pressure over generations of hosts and parasites will turn up the heat on evolution, resulting in offspring that may be quite differently to those that are alive today.

Reference
Studer, A., Thieltges, D. W., & Poulin, R. (2010). Parasites and global warming: Net effects of temperature on an intertidal host-parasite system. Marine Ecology Progress Series 415: 11-22.

This post was written by Sally Thorsteinsson

No comments:

Post a Comment