Parasite of the Day
March 18, 2021
Elicilacunosis dharmadii
February 15, 2021
Endovermis seisuiae
![]() |
Endovermis seisuiae inside its scaleworm (Lepidonotus sp.) host (from Fig. 1 of the paper) |
January 21, 2021
Pseudoacanthocephalus toshimai
![]() |
Left: Adult P. toshimai in a fish's gut, Centre: Adult P. toshimai in a frog's gut, Right: Larval P. toshimai from a woodlouse Photos from the graphical abstract of the paper |
So while the fish's gut is a hospitable enough environment for the parasite to grow into an adult worm, it is lacking a certain je ne sais quoi that the female worms need to start producing eggs and complete the life-cycle. It is not entirely clear what exactly that might be - it could be that the fish's gut does not produce the right type of nutrients for egg production, or there is simply not enough mating opportunities for the parasite in the gut of a fish - since they are not as commonly nor heavily infected as the amphibians. Either way those salmonids are ultimately dead-end hosts for P. toshimai. So how are the worms ending up in those fish in the first place?
This is where we have to consider the other animal involved in the parasite's life-cycle which is the woodlouse. Woodlice - also known as slaters - are terrestrial crustaceans commonly found under rocks and among leaf litter. As mentioned above, P. toshimai uses a species of woodlouse as intermediate host, where their eggs develop into larval stages known as cystacanths. Since those crustaceans are commonly eaten by frogs and salamanders, they also act as a vehicle to transport the parasite to its final host.
The researchers noticed that P. toshimai is only ever found in fish from one particular stream which is surrounded by bushes. These bushes are habitats for woodlice and amphibians which are the usual hosts for P. toshimai, and provide the necessary conditions for the parasite to complete its life-cycle. But every now and then, instead of getting eaten by a frog or a salamander, an infected woodlouse would fall into the stream, and become a tasty snack for a hungry fish. Indeed, the researchers did find a few woodlice in some of the fishes that they caught.
Nakao, M., & Sasaki, M. (2020). Frequent infections of mountain stream fish with the amphibian acanthocephalan, Pseudoacanthocephalus toshimai (Acanthocephala: Echinorhynchidae). Parasitology International 81: 102262.
December 17, 2020
Ophiocordyceps sinensis
![]() |
Left: O. sinensis fruiting body emerging from a caterpillar, photo by Zhu Liang Yang from here Right: Ghost moth (top) adult, and (bottom) caterpillar stage, photos from here |
November 19, 2020
Microgaster godzilla
![]() |
Top: Female adult Microgaster godzilla from Figure 1 of the paper Bottom: Frames showing the parasitisation process, from the supplementary videos of the paper |
October 21, 2020
Ichthyolepis africana
![]() |
Left: Scolex of Ichthyolepis, Right: Two of the host species, Mormyrus caschive (top), Marcusenius senegalensis (bottom) Photo of Ichthyolepis scolex from Fig. 2 of the paper, Photos of elephantfishes by John P. Sullivan and Christian Fry |
This species of intrepid parasite has been named Ichthyolepis africana, and the adult tapeworm dwells in the host's intestine, just behind the opening to the stomach, where it hangs in place using its formidable crown of hooks and four muscular suckers. Based on the phylogenetic analyses that scientists have conducted, the closest living relatives of this tapeworm are found in birds - specifically swifts, of all things.
And as if infecting a species of electric fish wasn't enough for this special tapeworm, I. africana was found in not just one, but SIX different species of elephantfishes, distributed across different parts of the African continent, including Senegal, Egypt, Sudan, and South Africa. And wherever they were found, they were present in between 36-63% of the elephantfish population that the scientists sampled. Its ubiquity and abundance shows that Ichthyolepis has had a long and well-established co-evolutionary relationship with this group of freshwater fish.
But how did it get there in the first place? Why and how did the ancestor of this tapeworm make the switch from living in a group of small birds to the gut of electric fishes - two lineages that have been separated by over 420 million years of divergent evolution?
A clue can be found with the animals that host this tapeworm's closest living relatives - which are swifts. Swifts belong to a family of birds called Apodidae, As their name implies, they are swift flyers with fantastic aerial manoeuvrability, which they use to snatch flying insects out of the sky. Tapeworms usually infect their vertebrate final host by having larval stages that develop in the bodies of prey animals that their final hosts feed on. So those insects would have served as marvellous vehicles for tapeworms which infect those birds.
But aerial hunting is not the only way for an animal to eat insects. Any insects that fell into a water body would have made a handy snack for many aquatic animals, and elephantfish - which usually feed on invertebrates such as small crustaceans and aquatic insects - would have eagerly hoovered up those morsels from above.
While most of those tapeworm larvae - which were adapted to the warm, cosy intestine of a bird - would have perish when they ended up in the gut of an elephantfish, an aberrant few might have had mutations which allow them to survive in such a unfamiliar environment, giving them a survival advantage. Over evolutionary time, surviving in an elephantfish's gut might have evolved into a viable alternative pathway to maturity, and the ancestors of Ichthyolepis might have found the conditions inside to be hospitable enough to abandon the bird host, and took up long-term residency in the gut of those electric fishes.
This type of host-switching or host-jumping across quite disparate host animal lineages has happened in other parasites too. In 2017, I wrote a post about a thorny-headed worm which has established itself in both seals and penguins - simply because they feed on the same prey (fish). Despite being in completely different classes of vertebrate animals, they were exposed to the same parasite via what they ate.
To some people, it may seem that spending your life living inside the body of another animal would relegate you to an evolutionary dead end. But the evolutionary histories of many different parasite lineages tell an entirely different story. It seems that when the right opportunities present themselves, parasites have often been ready to seize the moment, and make an evolutionary leap to take on new hosts, and beyond.
Reference:
Scholz, T., Tavakol, S., & Luus-Powell, W. J. (2020). First adult cyclophyllidean tapeworm (Cestoda) from teleost fishes: host switching beyond tetrapods in Africa. International Journal for Parasitology 50: 561-568
September 22, 2020
Parapulex chephrenis
Here's the second student guest posts from the third year Evolutionary Parasitology unit (ZOOL329) class of 2020. This post was written by Patra Petrohilos and it is about the social life of Egyptian Spiny Mouse and how that relates to their fleas. (you can also read a previous post about how a muscle-dwelling worm survives under a cover of snow here).
It doesn’t require a particularly vivid imagination to appreciate that being eaten by fleas is not exactly the most stress-free experience for an animal. Neither (to the surprise of introverts nowhere) is being bullied into submission by the resident bossy boots in your social group. Surely, then, it would logically follow that being bullied by your peers AND preyed upon by parasites at the same time would be the most stressful option of all? That’s certainly what some researchers thought – and were stunned to discover that the answer was not quite what they expected.
![]() |
Photo of spiny mouse from here, photo of Parapulex flea from here |
Before we get any further, you may be wondering how exactly one measures the stress levels of an animal. I’m so glad you asked. Turns out, when we get stressed our bodies produce this stuff called glucocorticoids – which is such a long clunky word that I’ll just refer to it from here on in as GC. In the short term (let’s say we see a predator across the street) this is a good thing – a short burst of GC takes the energy that we’d usually spend on boring things like digesting food and diverts it to more useful activities – like running away from predators. But in the long term (let’s say we are trapped in a cage with that predator for a year) it is a very bad thing. Too much GC can do all kinds of awful things, wreaking havoc on our immune system and our fertility. Scientists can measure how much GC an animal is producing (and therefore how stressed out it is) by analysing its poo. It’s all pretty glamorous.
These particular scientists were interested in how two different negative experiences (parasitism and social interaction) interact to affect an animal’s stress levels. They decided to investigate this by studying the Egyptian spiny mouse (Acomys cahirinus) – an incredibly social little fella that is found living in groups of one male and multiple females. Within this little society, one of those females usually stakes a claim to “Queen Bee” of the group. Bizarrely, they are also especially attractive to one particular species of flea (Parapulex chephrenis), who for some reason steer clear of all other mouse species in favour of this one.
Once they had gathered their mice, the scientists split the females into two groups. The first consisted of pairs of mice, two to a cage. As tends to happen in these situations, one of the pair invariably emerged as the bossier one. This two-mouse hierarchy was well and truly established after a week, by which time the submissive one knew her place well enough to not even attempt to rock the social boat. The second group was divided into single ladies. Each mouse in this group got an entire cage to herself (and peace from any potential bickering over petty things like food).
They then divided the groups further. Half of the paired mice and half of the single ladies were infected with P. chephrenis fleas, while the other half were left flea-free. For a brief period, a male was also added to each cage (just long enough to do the kinds of things that male mice like to do with female mice) and then mouse poo was collected at various points so the scientists could gauge each mouse’s stress levels.
To their amazement, the single mice were more stressed than their paired up counterparts – even the ones being dominated by the bossy boots cagemates. Apparently company is so important to such a social species that being alone is more traumatic than being at the bottom of the pecking order. But even more astoundingly, it was the mice who were not only solitary but also flea-free that were more stressed out than anyone!
It’s possible that flea infestation made these already-anxious solitary mice more likely to indulge in a bit of grooming (a behaviour that tends to soothe rodents), but regardless – it’s fascinating that the results were the exact opposite of expected. Rather than one stressful thing exacerbating the other (like adding Carolina Reaper chili peppers to an already hot sauce would) they almost seemed to cancel each other out (like adding yogurt to a vindaloo curry).
So what’s the moral of the story? If you’re an Egyptian spiny mouse, even having awful, flea infested friends that bully you is better than having no friends at all. And for those poor waifs who don’t have friends - any distraction is preferable to the loneliness of a solitary life. Even when that distraction is being eaten by fleas.
This post was written by Patra Petrohilos
September 15, 2020
Trichinella britovi
![]() |
Photo of Trichinella britovi from this paper |
![]() |
A picture depicting the experimental set-up, taken from Fig. 1 of the paper. |
August 24, 2020
Hexametra angusticaecoides
![]() |
Photos of Hexametra emerging from moribund geckoes from Fig 1, 3, and 4 of the paper |
One gecko was lucky enough to receive treatment in time to save it. It was initially given fenbendazole and pyrantel - two commonly used medications for treating parasitic worm infections - but they had no effects. So a surgical procedure was performed on the lizard to remove the deadly nematodes from under its skin, followed by a dose of levamisole. About two weeks after the surgery, the surviving gecko managed to recover to full health.
Between the nine dead gecko and the sole survivor, over 50 worms were retrieved. The worm in question was Hexametra angusticaecoides - a parasitic nematode which commonly infects reptiles. Some of you who have been following this blog for a while might recognise the genus Hexametra from a post back in 2016 where another species of that parasite was found in the body of a captive false coral snake.
So how did a bunch of crested geckos ended up with all these worms? Tracking down the original source of infection was a bit tricky, given some were sourced from a breeder in Canada, while other were sourced from a pet shop in Germany. Furthermore, they had been kept separately in different terrariums until they were combined into a single enclosure, soon after which the worms began appearing. However, it could be that particular terrarium which was responsible for the worms. Prior to housing the crested geckoes, that enclosure had been occupied by some wild-caught Madagascan mossy geckoes, Uroplatus sikorae.
July 16, 2020
Neofoleyellides boerewors
In humans, mosquitoes are responsible for transmitting a variety of parasitic infections such as the malaria parasite and filarial worms, as well as a range of different viruses. This also extends to other animals that are fed upon by mosquitoes, which are host to their own array of mosquito-transmitted parasites. There are some species of mosquitoes that specialise in feeding on ectothermic ("cold-blooded") vertebrates such as frogs and toads, and accordingly those mosquitoes are also vectors for a range of parasites that infect those animals.
![]() |
Left: Microfilaria larva from toad blood, Top left: Late L1 sausage-shaped stage from mosquito thorax, Top right: Adult female worm, Bottom right and left: Infected toad with adult worm in its right eye. Photos from Figure 3, 5, and 7 of the paper |
The adult worm mostly lives in the toad's body cavity or just under the skin, though some can end up in other parts of the body. For example, in one particularly heavily infected toad, the researchers found 52 adult worms, and one of those worms had even spilled over into the toad's right eye where they caused internal bleeding and blindness.
Inside the toad's body, the adult worm produces larval stages called microfilarials that circulate in the amphibian's blood vessels while waiting for a rendezvous with a hungry mosquito. When the mosquito slurps up a belly full of toad blood, they also end up ingesting a bunch of those baby worms.
Once inside the mosquito, these microfilarial transform into chubby, sausage-shaped worms (indeed, the species name of this parasite, boerewors, is named after a popular type of South African sausage), and proceed to congregate amidst the fat bodies in the thorax, where they can grow by feeding off the mosquito's nutrient reserves. After spending about ten days there, the larvae developed into the infective stage, ready to infect another toad. They migrate to the mosquito's head and move into position at the insect's mouthpart, preparing to disembark into the bloodstreams of another toad the moment that the mosquito begins feeding.
Anurans (frogs and toads) are host to a wide range of parasites, many of which have unique life cycles and life histories which are adaptations to the developmental history of their amphibian hosts. There is still a great deal we don't know about the diverse array of parasites that are found in frogs, toads, and other amphibians.
With many of those amphibians under threat from climate change, habitat destruction, and the dreaded amphibian chytrid fungi, it is highly likely that we may never fully learn about the wonderful adaptations of their associating symbionts - a hidden world of biodiversity that would tragically disappear along with their hosts.
Reference:
Netherlands, E. C., Svitin, R., Cook, C. A., Smit, N. J., Brendonck, L., Vanhove, M. P., & Du Preez, L. H. (2020). Neofoleyellides boerewors n. gen. n. sp.(Nematoda: Onchocercidae) parasitising common toads and mosquito vectors: morphology, life history, experimental transmission and host-vector interaction in situ. International Journal for Parasitology 50: 177-194