Left: Stained specimens of C. longicollis under light microscopy from here Right: SEM of a closely related species Cardiocephaloides physalis from here |
When it comes to C. longicollis infections, fish that hang around near the sea floor or the coast are the most loaded, most likely because they are in close proximity to the whelks which are sources of infection. Furthermore practically all the fish above a certain size (about 14 cm in length) are infected. Fish in those size range have on average 73 C. longicollis larvae in their brain, with one unlucky fish recorded to have 220. Ironically, while these larger fish are the motherlode when it comes to parasites as they have been accumulating parasites for longer, since they live in deeper waters they are out of the gulls' reach. So regardless of their heavy larval fluke burden, because gulls can't get to them, all those parasites are at a dead end, destined to die or end up in the stomach of another predator which is not a gull - at least not without human intervention.
Many of the 31 species of fish which C. longicollis infects are either targeted by commercial fishing operations, or end up as by-catch. Many of those by-catch fishes - some of which are loaded with parasites - are discarded at the port. This pile of of parasite-laden fish present opportunistic gulls with a rich and accessible feast. It is a similar situation at fish farms, where the researchers found over half the fish there are infected with C. longicollis. At these facilities, organic matter from left-over feedstock, fish poop, and dead fish would also attract hungry gulls. But they're not the only ones who are attending the seafood party - being opportunistic carnivores, the whelks also come along to scavenge - so you end up with a situation where two of the host for C. longicollis are hanging out at the same location.
As the gulls feed on the discarded fish, they also are also getting infected with C. longicollis. Meanwhile, the flukes which have already reached maturity in the gulls' gut from previous feeding bouts are laying eggs which get pooped out into the water, right next to the whelks which have come for the scraps. And as mentioned above, the whelks are next host in the parasite's life-cycle, and some of those attending the feast will end up serving as parasite factories for C. longicollis in the future. For these parasites, this entire arrangement is a blessing - whereas without the activities of commercial fishing many C. longicollis larvae would have been consigned to a dead end in a large, benthic-dwelling fish, never to reach their final host. Indeed, the researchers found the fluke to be more abundant in areas with intensive fishing activity and aquaculture.
Cardiocephaloides longicollis is not the only parasite benefiting from commercial fishing activities, a study published a few years ago showed that overfishing can also benefits the tongue-biter parasite. A more recent study shows that clams living at commercially harvested sites are more heavily infected with parasitic flukes. While this does not apply for all parasites, as many would actually be negatively affected by commercial harvesting as their host population dwindles, for some species like C. longicollis human activities provide them with a rich opportunity for expansion.
Reference:
Born-Torrijos, A., Poulin, R., Pérez-del-Olmo, A., Culurgioni, J., Raga, J. A., & Holzer, A. S. (2016). An optimised multi-host trematode life cycle: fishery discards enhance trophic parasite transmission to scavenging birds. International Journal for Parasitology 46: 745-753.